研究方向
荧光探针观测神经元相互通讯
人的大脑有超过几十亿个神经元。这些神经元分为上千个种类,并通过上千亿个突触相互联系。我们发展高效的可遗传编码的荧光分子探针,研究新的成像的方法,并结合两者研究神经元细胞水平上的信号转导,分析神经环路中细胞可兴奋性及突触传递调控的机制。我们还用发展的可视化方法探索在疾病模型中的神经系统环路上的可能的病变及机能障碍。高灵敏的光学成像技术可以提供重要的时空分辨率,多路观测可以同时对多个神经元成像,这些新的方法对于揭开大脑神经调质的特异性的细胞基础提供了有效的方法。我们希望我们新的技术发展能让更多的神经生物学家能用简单有效的方法分析神经局部环路中复杂的突触的活动,解析大脑精巧的结构与功能的关系。
代表性科研论文
Research as an independent PI:
1. Wan, J., Peng, W., Li, X., Qian, T., …, & *Li, Y.. (2021). A genetically encoded GRAB sensor for measuring serotonin dynamics. Nature Neuroscience, https://doi.org/10.1038/s41593-021-00823-7
2. *Wu, Z., He, K., Chen, Y., Li, H., Pan, S., Li, B., Liu, T., Wang, H., Du, J., Jing, M., & *Li, Y. (2021). An ultrasensitive GRAB sensor for detecting extracellular ATP in vitro and in vivo. bioRxiv, https://doi.org/10.1101/2021.02.24.432680.
3. *Jing, M., Li, Y., Zeng, J., Huang, P., ... & *Li, Y. (2020). An optimized acetylcholine sensor for monitoring in vivo cholinergic activity. Nature Methods, 17(11), 1139-1146.
4. #Sun, F., #Zhou, J., #Dai, B., Qian, T., …, *Lin, D., *Cui, G., & *Li, Y.(2020). Next-generation GRAB sensors for monitoring dopaminergic activity in vivo. Nature Methods, 17(11), 1156-1166.
5. Dong, A., He, K., Dudok, B., Farrell, J. S., …, & *Li, Y. (2020). A fluorescent sensor for spatiotemporally resolved endocannabinoid dynamics in vitro and in vivo. bioRxiv, https://doi.org/10.1101/2020.10.08.329169.
6. Wu, L., Dong, A., Dong, L., Wang, S. Q., & *Li, Y. (2019). PARIS, an optogenetic method for functionally mapping gap junctions. eLife, 8, e43366.
7. Feng, J., Zhang, C., Lischinsky, JE., Jing, M., ... & *Li, Y. (2019). A Genetically Encoded Fluorescent Sensor for Rapid and Specific In Vivo Detection of Norepinephrine. Neuron, 102(4), 745-761.
8. #Jing, M., #Zhang, P., Wang, G., Feng, J., ... Zhu, JJ. # & *Li, Y. (2018). A genetically-encoded fluorescent acetylcholine indicator for in vitro and in vivo studies. Nature Biotechnology, 36(8), 726-737.
9. #Sun, F., #Zeng, J., #Jing, M., Zhou, J., Feng, J., ... & *Li, Y. (2018). A genetically-encoded fluorescent sensor enables rapid and specific detection of dopamine in flies, fish, and mice. Cell, 174(2), 481-496.
Other publications with additional collaboration:
10. Bai, J., Guo, F., Li, M., *Li, Y., & *Lei, X. (2021). Click-based amplification: designed to facilitate various target labelling with ultralow background. RSC Chemical Biology, https://doi.org/10.1039/D1CB00002K.
11. Mayer, F. P., Iwamoto, H., Hahn, M. K., Grumbar, G. J., Stewart, A., Li, Y., & *Blakely, R. D. (2021). There's no place like home? Return to the home cage triggers dopamine release in the mouse nucleus accumbens. Neurochemistry International, 142, 104894.
12. #Zhu, R., #Zhang, G., Jing, M., Han, Y., Li, J., Zhao, J., Li, Y., & *Chen, P. R (2021). Genetically encoded formaldehyde sensors inspired by a protein intra-helical crosslinking reaction. Nature Communications, 12(1), 1-13.
13. Song, Y., Xu, C., Liu, J., Li, Y., Wang, H., Shan, D., Wainer Irving, W., Hu, X., *Zhang, Y., *Woo Anthony, Y.-H., & Xiao, R.-P. (2021). Heterodimerization with 5-HT2BR Is Indispensable for β2AR-mediated Cardioprotection. Circulation Research, https://doi.org/10.1161/CIRCRESAHA.120.317011
14. #Wang, J., #Li, J., #Yang, Q., Xie, Y.-K., Wen, Y.-L., Xu, Z.-Z., Li, Y., Xu, T., Wu, Z.-Y., Duan, S., & *Xu, H. (2021). Basal forebrain mediates prosocial behavior via disinhibition of midbrain dopamine neurons. Proceedings of the National Academy of Sciences, 118(7), e2019295118. https://doi.org/10.1073/pnas.2019295118.
15. #Sethuramanujam, S., #Matsumoto, A., deRosenroll, G., Murphy-Baum, B., McIntosh, J. M., Jing, M., Li, Y., Berson, D., *Yonehara, K., & *Awatramani, G. B. (2021). Rapid multi-directed cholinergic transmission in the central nervous system. Nature Communications, https://doi.org/10.1038/s41467-021-21680-9.
16. #Zeng, Y., #Luo, H., Gao, Z., Zhu, X., Shen, Y., Li, Y., *Hu, J., & *Yang, J. (2021). Reduction of prefrontal purinergic signaling is necessary for the analgesic effect of morphine. iScience, 24(3), 102213. https://doi.org/https://doi.org/10.1016/j.isci.2021.102213.
17. *Lin, R., Liang, J., Wang, R., Yan, T., Zhou, Y., Liu, Y., Feng, Q., Sun, F., Li, Y., Li, A., Gong, H., & *Luo, M. (2020). The raphe dopamine system controls the expression of incentive memory. Neuron, 1420-19.
18. #Peng, W., #Wu, Z., #Kun, S., Zhang, S., Li, Y. & *Min, X. (2020). Regulation of sleep homeostasis mediator adenosine by basal forebrain glutamatergic neurons. Science, 369, 1208.
19. #Kwak, H., #Koh, W., Kim, S., Song, K., ... Li, Y., Lee, H., Bae, Y. C., *Lee, C. J. & *Cheong, E. (2020). Astrocytes Control Sensory Acuity via Tonic Inhibition in the Thalamus. Neuron, 108(4), 691-706.
20. Crouse, R. B., Kim, K., …, Li, Y., Gao, X., Mineur, Y. S., & *Picciotto, M. R. (2020). Acetylcholine is released in the basolateral amygdala in response to predictors of reward and enhances learning of cue-reward contingency. eLife, 9:e57335.
21. # *Kim, H. R., #Malik, A. N., ..., Li, Y., Watabe-Uchida, M., Gershman, S. J., & *Uchida, N. (2020). A unified framework for dopamine signals across timescales. Cell, 183(6), 1600-1616.
22. *Bari, A., Xu, S., Pignatelli, M., Takeuchi, D., Feng, J., Li, Y., & *Tonegawa, S. (2020). Differential attentional control mechanisms by two distinct noradrenergic coeruleo-frontal cortical pathways. Proceedings of the National Academy of Sciences, 117(46), 29080-29089.
23. Mazzone, C.M., Liang-Guallpa, J.,Li, C., Wolcott, N. S., Boone, M. H., Southern, M., Kobzar, N. P., Salgado, I. A., Reddy, D. M., Sun, F., Zhang, Y., Li, Y., *Cui, G. & *Krashes, M. J.(2020). High-fat food biases hypothalamic and mesolimbic expression of consummatory drives. Nature Neuroscience, 23(10), 1253-1266.
24. Handler, A., Graham, T. G. M., Cohn, R., Morantte, I.,… Li, Y. & *Ruta, V. (2019). Distinct dopamine receptor pathways underlie the temporal sensitivity of associative learning. Cell, 178(1), 60-75.
25. Liang, L., Li, Y., … Deisseroth, K., Tsien, R. W., & *Luo, L. (2013). GABAergic Projection Neurons Route Selective Olfactory Inputs to Specific Higher-Order Neurons. Neuron, 79(5), 917-931.
Reviews, Book Reviews and Highlights:
26. Jing, M., Zhang, Y., Wang, H. & *Li, Y. (2019). GPCR‐based sensors for imaging neurochemicals with high sensitivity and specificity. Journal of Neurochemistry, https://doi.org/10.1111/jnc.14855
27. Zeng, J., Sun, F., Wan, J., Feng, J., & *Li, Y. (2019). New optical methods for detecting monoamine neuromodulators. Current Opinion in Biomedical Engineering, 12, 68-74.
28. *Wu, Z., & *Li, Y. (2020). New frontiers in probing the dynamics of purinergic transmitters in vivo. Neuroscience research, 152, 35-43.
29. Wang, H., Jing, M., & Li, Y. # (2018). Lighting up the brain: genetically encoded fluorescent sensors for imaging neurotransmitters and neuromodulators. Current Opinion in Neurobiology, 50, 171-178.
30. #Wang, A., #Feng, J., *Li, Y., & *Zou, P. (2018). Beyond Fluorescent Proteins: Hybrid and Bioluminescent Indicators for Imaging Neural Activities. ACS chemical neuroscience, 9(4), 639-650.
31. *Dong, A., Liu, S., & *Li, Y. (2018). Gap junctions in the nervous system: probing functional connections using new imaging approaches. Frontiers in Cellular Neuroscience, 12, 320.
32. *Li, Y., & *Rao, Y. (2015). Pied piper of neuroscience. Cell, 163(2), 267-268.