alphafold3安装和使用

V100-gpu_2l和gpu_4l分区计算会爆炸

2024-11-25 00:39:11 admin 0

https://github.com/google-deepmind/alphafold3/issues/59



图片关键词


We ran the "2PV7" example from the docs on all GPU models available on our cluster with the following results:

gpuranking_scoredriver_vercuda
rtx_2080_ti-99.68535.183.0612.2
rtx_30900.67550.127.0512.4
rtx_40900.67550.127.0512.4
titan_rtx-99.78550.127.0512.4
quadro_rtx_6000-99.74550.90.0712.4
v100-99.78550.127.0512.4
a100_pcie_40gb0.67550.127.0512.4
a100_80gb0.67550.127.0512.4

Specifically, a ranking score of -99 corresponds to noise/explosion, and a ranking score of 0.67 corresponds to a visually compelling output structure.

Update (20.11): added driver/cuda versions reported by nvidia-smi.



These are the GPU capabilities (see https://developer.nvidia.com/cuda-gpus) for the GPUs mentioned:

rtx_2080_ti7.5(bad)
rtx_3090 8.6
rtx_4090 8.9
titan_rtx7.5(bad)
quadro_rtx_60007.5(bad)
v100 7.0(bad)
a100_pcie_40gb 8.0
a100_80gb8.0


首页
资源&收费
集群
成果
问答